Influence of Electromagnetic Activation of Cement Paste and Nano-Modification by Rice Straw Biochar on the Structure and Characteristics of Concrete

Author:

Beskopylny Alexey N.ORCID,Stel’makh Sergey A.ORCID,Shcherban’ Evgenii M.ORCID,Mailyan Levon R.,Meskhi Besarion,Smolyanichenko Alla S.,Varavka Valery,Beskopylny Nikita,Dotsenko Natal’ya

Abstract

One main global problem is the accumulation of a large amount of agricultural waste. This problem causes environmental pollution and requires an immediate comprehensive solution. The purpose of this study was scientific substantiation and experimental testing, at the micro- and macro levels, of the joint influence of electromagnetic activation of cement paste and nano-modification by rice straw biochar on the strength and strain properties of concrete. In addition to standard methods, the methods of electromagnetic activation, scanning electron microscopy, and energy dispersive spectrometry were used. The results of the joint influence of electro-magnetic activation and nano-modification by rice straw biochar on the strength and strain characteristics of concrete were experimentally verified and confirmed by microstructure analysis. Electromagnetic treatment of the cement paste increased the compressive strength, axial compressive strength, tensile strength in bending, and axial tensile strength of concrete. The best performance was demonstrated by electromagnetically-activated concrete containing 5 wt.% rice straw biochar. Strength characteristics increased from 23% to 28% depending on the type of strength, ultimate tensile strains decreased by 14%, and ultimate compressive strains by 8% in comparison with the control concrete composition. Replacing part of the cement with 10 wt.% and 15 wt.% rice straw biochar led to a strong drop in strength characteristics from 14 to 34% and an increase in strain characteristics from 9 to 21%. Scanning electron microscopy showed a denser and more uniform structure of electromagnetically activated samples.

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3