Abstract
Radially layered cylindrical piezoceramic/epoxy composite transducers have been designed by integrating the excellent performance of piezoelectric/polymer composites and the radial radiation ability of cylindrical configurations, which are promising in developing novel ultrasonic and underwater sound techniques. Our previous study has explored the effects of the external resistance on the electromechanical characteristics of the transducer, and obtained some valuable findings. To clearly understand the electromechanical characteristics of the transducer and to guide the device design, in this paper, parametric analysis was performed to reveal the effects of multiple key factors on the electromechanical characteristics. These factors include material parameters of epoxy layers, piezoceramic material types, and locations of piezoceramic rings. In order to better analyze the influence of these factors, a modified theoretical model, in which every layer has different geometric and material parameters, was developed based on the model given in the previous work. Furthermore, the reliability of the model was validated by the ANSYS simulation results and the experimental results. The present investigation provides some helpful guidelines to design and optimize the radially layered cylindrical piezoceramic/epoxy composite transducers.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献