The Balancing Act in Ferroelectric Transistors: How Hard Can It Be?

Author:

Hueting Raymond

Abstract

For some years now, the ever continuing dimensional scaling has no longer been considered to be sufficient for the realization of advanced CMOS devices. Alternative approaches, such as employing new materials and introducing new device architectures, appear to be the way to go forward. A currently hot approach is to employ ferroelectric materials for obtaining a positive feedback in the gate control of a switch. This work elaborates on two device architectures based on this approach: the negative-capacitance and the piezoelectric field-effect transistor, i.e., the NC-FET (negative-capacitance field-effect transistor), respectively π -FET. It briefly describes their operation principle and compares those based on earlier reports. For optimal performance, the adopted ferroelectric material in the NC-FET should have a relatively wide polarization-field loop (i.e., “hard” ferroelectric material). Its optimal remnant polarization depends on the NC-FET architecture, although there is some consensus in having a low value for that (e.g., HZO (Hafnium-Zirconate)). π -FET is the piezoelectric coefficient, hence its polarization-field loop should be as high as possible (e.g., PZT (lead-zirconate-titanate)). In summary, literature reports indicate that the NC-FET shows better performance in terms of subthreshold swing and on-current. However, since its operation principle is based on a relatively large change in polarization the maximum speed, unlike in a π -FET, forms a big issue. Therefore, for future low-power CMOS, a hybrid solution is proposed comprising both device architectures on a chip where hard ferroelectric materials with a high piezocoefficient are used.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3