Phenolic Resin Foam Composites Reinforced by Acetylated Poplar Fiber with High Mechanical Properties, Low Pulverization Ratio, and Good Thermal Insulation and Flame Retardant Performance

Author:

Liu Jian,Wang Liuliu,Zhang Wei,Han Yanming

Abstract

Phenolic foam composites (PFs) are of substantial interest due to their uniform closed-cell structure, low thermal conductivity, and good thermal insulation performance. However, their disadvantages of a high pulverization rate and poor mechanical properties restrict their application in building exterior insulation. Therefore, the toughening of these composites is necessary. In this paper, poplar fiber was treated with an acetylation reagent, and the acetylated fiber was used to prepare modified phenolic foams (FTPFs); this successfully solved the phenomenon of the destruction of the foam structure due to the agglomeration of poplar fiber in the resin substrate. The foam composites were comprehensively evaluated via the characterization of their chemical structures, surface morphologies, mechanical properties, thermal conductivities, and flame retardant properties. It was found that the compressive strength and compressive modulus of FTPF-5% respectively increased by 28.5% and 37.9% as compared with those of PF. The pulverization ratio was reduced by 32.3%, and the thermal insulation performance and flame retardant performance (LOI) were improved. Compared with other toughening methods for phenolic foam composites, the phenolic foam composites modified with surface-compatibilized poplar fiber offer a novel strategy for the value-added utilization of woody fiber, and improve the toughness and industrial viability of phenolic foam.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3