Room-Temperature Synthesis of ZnS Nanoparticles Using Zinc Xanthates as Molecular Precursors

Author:

Mintcheva NeliORCID,Gicheva Gospodinka,Panayotova MarinelaORCID,Kulinich Sergei A.ORCID

Abstract

Molecular precursors are suitable starting compounds for preparation of semiconductor nanoparticles (NPs), which allow for control of atomic ratio, composition, monodispersity, and particle size of nanoscaled metal sulfides/oxides. In the present study, we carried out a one-pot synthesis of ZnS NPs in aqueous triethanolamine medium at room temperature, from molecular precursor zinc xanthate as a source of both Zn2+ and S2− ions. Furthermore, we compared the products obtained from zinc ethylxanthate (Zn(C2H5OCS2)2) and zinc amylxanthate (Zn(C5H11OCS2)2). The as-prepared ZnS NPs were found to crystallize in cubic phase, which usually forms at low temperatures, with the dimension dependent on the xanthate precursor used. The long carbon-chain xanthate Zn(C5H11OCS2)2 gave spherically shaped NPs with an average diameter of 19 nm, while the NPs that originated from zinc ethylxanthate had a mean size of ~26 nm. Both nanomaterials had surface sulfur vacancies that extended their absorption spectra toward the visible region and reduced the band gap. This allowed both materials to demonstrate photocatalytic performance under visible-light irradiation. Photodegradation of methylene blue over newly prepared ZnS NPs was tested under visible light, demonstrating efficiency of 50%–60% after 180 min.

Funder

Bulgarian National Science Fund

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3