Abstract
Epoxy resin-based nanocomposites have been widely researched for being potential insulating materials in high voltage power equipment. In this paper, nano-TiO2 particles were chosen and surface-modified by a silane coupling agent containing an epoxy group. The effect of functionalized nano-TiO2 doping on the physical properties of epoxy resin was studied. The results of differential scanning calorimetry show that Tg increased significantly and can be increased by up to 35 °C. Therefore, it is believed that the suppression of molecular motion by the addition of nanofillers works effectively in the case of this functionalized nano-TiO2 and a strong interaction between the epoxy resin and the nano-TiO2 was formed after surface modification. Consequently, dynamic mechanical properties, thermal conductivity, electrical conductivity, and trap characteristics of epoxy resin are all adjusted after introducing functionalized nano-TiO2. All of these physical properties were analyzed from the perspective of suppression of molecular motion, and it is of significance to establish the theory of a nanocomposite dielectric. Besides, the results show that the epoxy/TiO2 nanocomposite is expected to be applied in the insulation system of electrical equipment.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Subject
General Materials Science
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献