Size-Dependent Structural Properties of a High-Nb TiAl Alloy Powder

Author:

Liu Binglin,Wang Maosong,Du Yulei,Li Jingxiao

Abstract

TiAl-based alloys are promising light weight structural materials for high temperature applications in the field of aerospace. Recently, fabrication technologies starting from powders including powder metallurgy and additive manufacturing have been developed to overcome the difficulties in the processing, machining and shaping of TiAl-based alloys. Spherical alloy powders with different particle size distributions are usually used in these fabrication techniques. The purpose of this study is to reveal the size-dependent structural properties of a high-Nb TiAl powder for these fabrication technologies starting from powders. A high-Nb TiAl pre-alloyed powder with nominal composition of Ti-48Al-2Cr-8Nb (at. %) was prepared by the electrode induction melting gas atomization (EIGA) method. The phase structure and morphology of the as-atomized powders were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The size-dependent structural changes of the as-atomized powders with different sizes were studied by differential scanning calorimetry (DSC) and in situ high temperature XRD. It was found that with decreasing the powder size, the content of the γ-TiAl phase decreases and the α2-Ti3Al phase increases. The α2-Ti3Al to γ-TiAl phase transformation was found in the temperature range of 600–770 °C. Based on the present work, the structural characteristics of TiAl powders are strongly dependent on their particle size, which should be considered in optimizing the process parameters of TiAl alloys fabricated from powders.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3