Effects of Rotary Swaging Parameters and Artificial Ageing on Mechanical Properties and Microstructure of 2024 Precipitation-Hardenable Aluminium Alloy

Author:

Nacházel Jan,Palán Jan,Dlouhý Jaromír,Sláma Peter,Nový Zbyšek

Abstract

This work concerns mechanical properties in relation to microstructural changes in hardenable EN AW-2024 aluminium alloy in wrought and heat treated condition. The treated material benefits from synergistic effects of hardening mechanisms. Grain boundary strengthening and work hardening were activated in this material by rotary swaging. Rotary swaging is a method which shows great promise for industrial use. Precipitation hardening was achieved thanks to the material’s age hardening ability. First, the material was artificially-aged in a furnace at 140–180 °C. Second, natural ageing was used. Mechanical properties of the as-treated material were tested and microstructural processes were explored using electron microscopy and differential scanning calorimetry. The treatment route which delivered the best results was as follows: solution annealing 500 °C/1 h + water cooling + rotary swaging + artificial ageing 160 °C/21 h. This led to a yield strength close to 640 MPa, and ultimate strength above 660 MPa, and elongation of 8%. Electron backscatter diffraction observation revealed that in this condition, the ratio of Low-angle to High-angle grain boundaries is 80:20. The microstructure contains both T-phase in the interior of grains, whose particles are normally oval-shaped, and S-phase, which is present in two shapes: small oval particles or coherent needles aligned to <100> direction.

Funder

Ministry of Education, Youth and Science

Publisher

MDPI AG

Subject

General Materials Science

Reference25 articles.

1. The mechanism of artificial aging of Al-Cu-Mg alloy;Bagaryatsky;Dokl. Akad. Nauk SSSR,1952

2. The structural ageing characteristics of Al-Cu-Mg alloys with cooper: Magnesium weight ratios of 7:1 and 2.2:1;Silcock;J. Inst. Met.,1961

3. Precipitation processes during the early stages of ageing in AlCuMg alloys

4. Precipitates and intermetallic phases in precipitation hardening Al–Cu–Mg–(Li) based alloys

5. Coexistence of clusters, GPB zones, S″-, S′- and S-phases in an Al–0.9% Cu–1.4% Mg alloy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3