Exploratory Full-Field Strain Analysis of Regenerated Bone Tissue from Osteoinductive Biomaterials

Author:

Peña Fernández MartaORCID,Black Cameron,Dawson Jon,Gibbs David,Kanczler Janos,Oreffo Richard O. C.ORCID,Tozzi Gianluca

Abstract

Biomaterials for bone regeneration are constantly under development, and their application in critical-sized defects represents a promising alternative to bone grafting techniques. However, the ability of all these materials to produce bone mechanically comparable with the native tissue remains unclear. This study aims to explore the full-field strain evolution in newly formed bone tissue produced in vivo by different osteoinductive strategies, including delivery systems for BMP-2 release. In situ high-resolution X-ray micro-computed tomography (microCT) and digital volume correlation (DVC) were used to qualitatively assess the micromechanics of regenerated bone tissue. Local strain in the tissue was evaluated in relation to the different bone morphometry and mineralization for specimens (n = 2 p/treatment) retrieved at a single time point (10 weeks in vivo). Results indicated a variety of load-transfer ability for the different treatments, highlighting the mechanical adaptation of bone structure in the early stages of bone healing. Although exploratory due to the limited sample size, the findings and analysis reported herein suggest how the combination of microCT and DVC can provide enhanced understanding of the micromechanics of newly formed bone produced in vivo, with the potential to inform further development of novel bone regeneration approaches.

Funder

Biotechnology and Biological Sciences Research Council

Publisher

MDPI AG

Subject

General Materials Science

Reference71 articles.

1. The biology of fracture healing

2. Bone injury and fracture healing biology;Oryan;Biomed. Environ. Sci.,2015

3. Fracture healing: The diamond concept

4. Current management of long bone large segmental defects

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3