Focusing Coherent Light through Volume Scattering Phantoms via Wavefront Shaping

Author:

Fritzsche Niklas12,Ott Felix12,Pink Karsten12,Kienle Alwin12

Affiliation:

1. Institut für Lasertechnologien in der Medizin und Meßtechnik an der Universität Ulm, D-89081 Ulm, Germany

2. Faculty of Natural Sciences, Ulm University, D-89081 Ulm, Germany

Abstract

Manipulating the wavefront of coherent light incident on scattering media to enhance the imaging depth, sensitivity, and resolution is a common technique in biomedical applications. Local phase variations cause changes in the interference and can be used to create a focus inside or behind a scattering medium. We use wavefront shaping (WFS) to force constructive interference at an arbitrary location. The amount of light transmitted into a given region strongly depends on the scattering and absorption characteristics. These are described by their respective coefficients μs and μa and the scattering phase function. Controlling the scattering and absorption coefficients, we study the behavior of wavefront shaping and the achievable intensity enhancement behind volume scattering media with well-defined optical properties. The phantoms designed in this publication are made of epoxy resin. Into these epoxy matrices, specific amounts of scattering and absorbing particles, such as titanium dioxide pigments and molecular dyes, are mixed. The mixture obtained is filled into 3D-printed frames of various thicknesses. After a precise fabrication procedure, an integrating sphere-based setup characterizes the phantoms experimentally. It detects the total hemispherical transmission and reflection. Further theoretical characterization is performed with a newly developed hybrid PN method. This method senses the flux of light into a particular angular range at the lower boundary of a slab. The calculations are performed without suffering from ringing and fulfill the exact boundary conditions there. A decoupled two-path detection system allows for fast optimization as well as sensitive detection. The measurements yield results that agree well with the theoretically expected behavior.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference20 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3