Bounds for Coding Theory over Rings

Author:

Gassner Niklas,Greferath MarcusORCID,Rosenthal JoachimORCID,Weger ViolettaORCID

Abstract

Coding theory where the alphabet is identified with the elements of a ring or a module has become an important research topic over the last 30 years. It has been well established that, with the generalization of the algebraic structure to rings, there is a need to also generalize the underlying metric beyond the usual Hamming weight used in traditional coding theory over finite fields. This paper introduces a generalization of the weight introduced by Shi, Wu and Krotov, called overweight. Additionally, this weight can be seen as a generalization of the Lee weight on the integers modulo 4 and as a generalization of Krotov’s weight over the integers modulo 2s for any positive integer s. For this weight, we provide a number of well-known bounds, including a Singleton bound, a Plotkin bound, a sphere-packing bound and a Gilbert–Varshamov bound. In addition to the overweight, we also study a well-known metric on finite rings, namely the homogeneous metric, which also extends the Lee metric over the integers modulo 4 and is thus heavily connected to the overweight. We provide a new bound that has been missing in the literature for homogeneous metric, namely the Johnson bound. To prove this bound, we use an upper estimate on the sum of the distances of all distinct codewords that depends only on the length, the average weight and the maximum weight of a codeword. An effective such bound is not known for the overweight.

Funder

armasuisse Science and Technology

Swiss National Science Foundation

European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bounds on Size of Homopolymer Free Codes;2023 IEEE International Symposium on Information Theory (ISIT);2023-06-25

2. Information Theoretic Methods for Future Communication Systems;Entropy;2023-02-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3