Bendductor—Transformer Steel Magnetomechanical Force Sensor

Author:

Grenda Przemysław,Kutyła MonikaORCID,Nowicki MichałORCID,Charubin TomaszORCID

Abstract

In this paper, the design and investigation of an innovative force sensor, based on the Villari effect, is presented. The sensor was built from electrical steel, in a pressductor pattern, but working in bending load mode. The results of the experimental research allowed for the evaluation of transducer’s performance, mitigation of measurement hysteresis, and optimization of its functional parameters. Several issues have been examined, among them the selection of supply and measured signals, the measured values’ impact on measurement hysteresis, harmonic analysis, and the selection of proper current waveforms and frequencies. The proposed sensor is robust, made from inexpensive materials, and has high sensitivity, as compared to other magnetoelastic sensors. It has much higher stress sensitivity than other magnetoelastic sensors due to deformation mode. Based on the tests, its measuring range can be defined as 0.5–5 N with a near-linear characteristic, SNR of 46 dB, and 0.11 N uncertainty.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference30 articles.

1. Handbook of Force Transducers: Principles and Components;Stefanescu,2011

2. The possibility of utilizing the high permeability magnetic materials in construction of magnetoelastic stress and force sensors

3. The pressductor and the torductor — Two heavy-duty transducers based on magnetic stress sensitivity

4. Magnetoelastic permeability measurement for stress monitoring in steel tendons and cables;Wang,2000

5. Pressductor

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3