Vibration Fatigue Analysis of Carbon Steel Coil Spring under Various Road Excitations

Author:

Kong Yat,Abdullah Shahrum,Schramm Dieter,Omar Mohd,Haris Sallehuddin

Abstract

This paper presents the evaluation of frequency-based approach predicted spring using acceleration signals that were collected from various road conditions. Random loadings in the forms of acceleration are nominal and more flexible for vehicle components fatigue assessment. In this analysis, the strain time history of the spring and acceleration signals of the suspension strut was measured from three different road conditions. The acceleration signals were then transformed into power spectra density (PSD). PSD cycle counter, like Lalanne, Dirlik, and narrow band approach, was applied to obtain equivalent load cycles. The stress response was obtained through having the equivalent load cycles with a spring modal frequency response function (FRF) and different stress criterion, like absolute maximum principal and critical plane approaches. Then, the stress response was used to predict the spring fatigue life using stress-life (S-N) approach. The results revealed that the harshest road condition was the rural road where the spring with fatigue life of 4.47 × 107 blocks to failure was obtained. The strain predicted fatigue life was used to validate the frequency-based predictions using a conservative approach. It was found that the Dirlik approach has shown the closest results to the strain life approach, which suggested that the Dirlik approach could be used for spring fatigue life prediction with the acceptable accuracy.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference37 articles.

1. Random Vibration Fatigue—A Study Comparing Time Domain and Frequency Domain Approaches for Automotive Applications;Teixeira,2014

2. A review of the fatigue analysis of an automobile frames;Jadav Chetan;Int. J. Adv. Comput. Res.,2012

3. Comparison of Spectral Methods for Fatigue Analysis in Non-gaussian Random Processes – Application to Elastic-plastic Behaviour

4. Considerations of Vibration Fatigue for Automotive Components

5. Vibration induced fatigue assessment in vehicle development process;Kagnici;Int. J. Mech. Mechatron. Eng.,2012

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3