Abstract
Rhodium-modified as well as palladium-modified and non-modified aluminide coatings on CMSX-4 Ni-based superalloy were oxidized in air atmosphere at 1100 °C. Uncoated substrate of CMSX-4 superalloy was also oxidized. The microstructure of coatings before oxidation consists of two layers: an additive and an interdiffusion one. The NiAl intermetallic phase was found in the microstructure of non-modified coatings, while the (Ni,Rh)Al intermetallic phase was observed in the microstructure of rhodium-modified aluminide coatings before oxidation. The (Ni,Pd)Al phase of palladium-modified aluminide coatings in the additive layer was observed before oxidation. The microstructure of the oxidized non-modified coatings consists of the γ’-Ni3Al phase. The oxide layer (10 μm thick) consists of the NiAl2O4 phase and porous Ni-rich oxide. The oxide layers (5 μm thick) formed on the surface of rhodium or palladium-modified coatings consist of the α-Al2O3 phase and the top layer of the NiAl2O4 phase. Al-depleted (30 at. %) β-NiAl grains besides the γ’-Ni3Al phase were found in the rhodium-modified coating, while only the γ’-Ni3Al phase region was revealed in the palladium-modified coating, Rhodium-modified coatings with small rhodium content (0.5 μm rhodium layer thick) can be an alternative for palladium-modified ones with bigger palladium content (3 μm thick palladium layer).
Funder
National Science Centre, Poland
Subject
General Materials Science,Metals and Alloys
Reference20 articles.
1. Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties
2. GCP and TCP Phases Presented in Nickel-Base Superalloys;Juraj;Mater. Today Proc.,2016
3. Oxidation of Superalloys in Extreme Environments;Pint;Miner. Met. Mater. Soc.,2010
4. Role of Aluminide Coating on Oxidation Resistance of Ni-Based Single Crystal Superalloy at 900 °C;Latief;Int. J. Electrochem. Sci.,2015
5. Microstructural Study on Oxidation Resistance of Nonmodified and Platinum Modified Aluminide Coating
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献