Data Acquisition of Logging While Drilling at the Newly Discovered Gas Hydrate Reservoir in Hyuganada Sea, Japan

Author:

Imai Toshinori1,Aung Than Tin1,Fujimoto Akira1,Ohtsuki Satoshi1ORCID,Tano Kotaro1,Otomo Shuhei1,Shimoda Naoyuki1,Yoshii Takanao2,Sakata Ryugen2,Yoneda Jun3,Suzuki Kiyofumi4

Affiliation:

1. Japan Organization for Metals and Energy Security, Chiba-shi 261-0025, Chiba, Japan

2. Japan Methane Hydrate Operating Co., Ltd., Chiyoda-ku, Tokyo 100-0005, Japan

3. National Institute of Advanced Industrial Science and Technology, Sapporo 062-8517, Hokkaido, Japan

4. National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8560, Ibaraki, Japan

Abstract

From December 2021 to January 2022, MH21-S conducted an exploratory drilling campaign using logging-while-drilling tools to confirm the methane hydrate concentrated zone (MHCZ) for future offshore production tests. In a preliminary screening study using seismic survey data, methane hydrate (MH) prospects have been extracted in The Hyuganada Sea, offshore Kyushu. In the exploration drilling site, a previous study had reported that MH prospects were inferred from four indices. We have selected two MH prospects: one with an anticlinal structure and another with a planus structure. As a result of drilling, a resistivity value higher than 3 Ω·m, which was a criterion for interpreting MHCZs from log data, was confirmed at a depth of 336–376 mBSF in the prospect with an anticlinal structure. The MH saturation calculated using Archie’s formula was 12–95% (average saturation of 70%). The average density porosity at the same depth was 52%. P-wave velocities were faster than the upper layers. Compared with those of the MHCZ at Daini Atsumi Knoll, the MH saturation is expected to be higher, the spread of some strong-amplitude reflectors has been interpreted from seismic survey data, and the potential MH resources in this area can be sufficiently expected.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3