Design of Inductive Power Transfer Charging System with Weak Coupling Coefficient

Author:

Chen Yuhang1ORCID,Yang Shichun1,Zheng Mengchao1,Yan Xiaoyu2ORCID

Affiliation:

1. School of Transportation Science and Engineering, Beihang University, Beijing 102206, China

2. Research Institute of Aero-Engine, Beihang University, Beijing 102206, China

Abstract

Inductive power transfer (IPT) technology is used in various applications owing to its safety features, robust environmental adaptability, and convenience. In some special applications, the charging pads are required to be as compact as possible to accommodate practical spatial requirements, and even size requirements dictate that the diameter of the charging pad matches the air gap. However, such requirements bring about a decrease in the transmission efficiency, power, and tolerance to misalignment of the system. In this paper, by comparing a double-sided inductor–capacitor–capacitor (LCC), double-sided inductor–capacitor–inductor (LCL), series–series (SS), and inductor–capacitor–capacitor–series (LCC-S) compensation topologies in IPT systems, we identified a double-sided LCC compensation topology that is suitable for weak coupling coefficients. Furthermore, this study modeled and simulated the typical parameters of coreless coils in circular power pads, such as the number of coil layers, turns, wire diameter, and wire spacing, to enhance the mutual inductance of the magnetic coupler during misalignment and long-distance transmission. A wireless charging system with 640 W output power was built, and the experimental results show that a maximum dc-dc efficiency of over 86% is achieved across a 200 mm air gap when the circular power pad with a diameter of 200 mm is well aligned. The experimental results show that using a suitable compensation topology and optimizing the charging pad parameters enables efficient IPT system operation when the coupling coefficient is 0.02.

Funder

National Key R&D Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3