Uncertain Scheduling of the Power System Based on Wasserstein Distributionally Robust Optimization and Improved Differential Evolution Algorithm

Author:

Hao Jie1ORCID,Guo Xiuting2ORCID,Li Yan1,Wu Tao1

Affiliation:

1. School of Electrical Engineering, Northwest Minzu University, Lanzhou 730030, China

2. School of Science, Lanzhou University of Technology, Lanzhou 730050, China

Abstract

The rapid development of renewable energy presents challenges to the security and stability of power systems. Aiming at addressing the power system scheduling problem with load demand and wind power uncertainty, this paper proposes the establishment of different error fuzzy sets based on the Wasserstein probability distance to describe the uncertainties of load and wind power separately. Based on these Wasserstein fuzzy sets, a distributed robust chance-constrained scheduling model was established. In addition, the scheduling model was transformed into a linear programming problem through affine transformation and CVaR approximation. The simplex method and an improved differential evolution algorithm were used to solve the model. Finally, the model and algorithm proposed in this paper were applied to model and solve the economic scheduling problem for the IEEE 6-node system with a wind farm. The results show that the proposed method has better optimization performance than the traditional method.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3