Study on Geological Deformation of Supercritical CO2 Sequestration in Oil Shale after In Situ Pyrolysis

Author:

Yan Heping1,Wu Xiurong1,Li Qiang2,Fang Yinghui1,Zhang Shuo2

Affiliation:

1. Shaanxi 194 Coal Geological Co., Ltd., Tongchuan 727007, China

2. College of Construction Engineering, Jilin University, Changchun 130026, China

Abstract

After the completion of in situ pyrolysis, oil shale can be used as a natural place for CO2 sequestration. However, the effects of chemical action and formation stress-state changes on the deformation of oil shale should be considered when CO2 is injected into oil shale after pyrolysis. In this study, combined with statistical damage mechanics, a transverse isotropic model of oil shale with coupled damage mechanisms was established by considering the decreased mechanical properties and the chemical damage caused by CO2 injection. The process of injecting supercritical CO2 into oil shale after pyrolysis was simulated by COMSOL6.0. The volume distribution of CO2 and the stress evolution in oil shale were analyzed. It is found that CO2 injection into oil shale after pyrolysis will not produce new force damage, and the force damage caused by the decrease in the mechanical properties of oil shale after pyrolysis can offset the ground uplift caused by CO2 injection to a certain extent. Under the combined action of chemical damage and mechanical damage, the uplift of a formation with a thickness of 200 m is only 10 cm. The injection of supercritical CO2 is beneficial for maintaining the stability of oil shale after in situ pyrolysis.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3