Effects of Hybrid-Type Artificial Groundwater Recharge and Underground Barrier in a Small Basin

Author:

Choi Myoung-RakORCID,Kim Gyoo-BumORCID

Abstract

Climate change is exacerbating water shortages in upstream basins in the Korean peninsula that lack agricultural water supply systems. The basin investigated in this study requires an extra 208 m3·d−1 of agricultural water during May (the busiest month for agriculture). The purpose of this study was to assess a hybrid-artificial recharge and circulation system, which was composed of a hybrid-recharge source and re-infiltration of pumped water in the field, and to estimate yield capacity by a field injection test and a numerical model. Injecting pretreated stream water for 42 d increased groundwater levels in the recharge basin. Water budget analysis in MODFLOW simulations revealed that injecting water increased groundwater levels as well as stream discharge due to the terrain’s gentle slope. To prevent downstream discharge and maintain groundwater levels after injection, we assumed the installation of an underground barrier at the basin outlet in the model, following which changes in groundwater levels and water balance were simulated. Water level was persistently maintained after a ~31-cm water level rise, and 590 m3·d−1 of water could be supplied from the collector well, which can ease water shortages. Therefore, it is necessary to develop structures to prevent recharged water escape when artificially recharging groundwater in small upstream basins. In upstream areas where reservoirs or water supply conduits are unfeasible, artificial recharge systems could solve water shortages.

Funder

Korea Environmental Industry and Technology Institute

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference23 articles.

1. Climate change and groundwater: India’s opportunities for mitigation and adaptation

2. Groundwater around the World: A Geographic Synopsis;Margat,2013

3. Predicting Infiltration and Ground-Water Mounds for Artificial Recharge

4. The Effectiveness of Artificial Recharge of Groundwater: A Review;Gale,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3