A Comparison Study of the Nutrient Fluxes in a Newly Impounded Riverine Lake (Longjing Lake): Model Calculation and Sediment Incubation

Author:

Du Cheng,Pan Yan’an,Tang WenzhongORCID,Yue Qiansheng,Zhang Hong

Abstract

Diffusion flux is an essential tool to estimate the contribution of internal nitrogen and phosphorus in eutrophic lakes. There are mainly two methods, i.e., model calculation based on in-situ porewater sampling and water quality monitoring in laboratory incubation. The results obtained by the two methods are rarely compared, decreasing the validity of internal contribution and following management strategies. In this study, sediment samples were collected from a lake in China, then the fluxes were estimated by model calculation and laboratory incubation. The results show that there is an order of magnitude difference in the fluxes measured by these two methods. The mean values of ammonia (NH4+-N) and soluble reactive phosphate (SRP) obtained from the model calculations were 24.4 and 1.30, respectively. The mean values of NH4+-N and SRP obtained in the undisturbed group of sediment incubation were 7.84 and 5.47, respectively, and in the disturbed group of sediment incubation were 16.2 and 4.06, respectively. Sediment incubation is a combination of multiple influencing factors to obtain fluxes, while porewater model is based on molecular diffusion as the theoretical basis for obtaining fluxes. According to the different approaches of the two methods, sediment incubation is recommended as a research tool in lake autochthonous release management when the main objective is to remove pollution, while the porewater model is recommended as a research tool when the main objective is to control pollution. When assessing the diffusive flux of nitrogen, it is recommended to choose the stable form of total dissolved nitrogen to discuss the flux results.

Funder

National Natural Science Foundation of China

State Key Joint Laboratory of Environment Simulation and Pollution Control

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3