Algorithm to Predict the Rainfall Starting Point as a Function of Atmospheric Pressure, Humidity, and Dewpoint

Author:

Gutierrez-Lopez AlfonsoORCID,Cruz-Paz Ivonne,Muñoz Mandujano MartinORCID

Abstract

Forecasting extreme precipitations is one of the main priorities of hydrology in Latin America and the Caribbean (LAC). Flood damage in urban areas increases every year, and is mainly caused by convective precipitations and hurricanes. In addition, hydrometeorological monitoring is limited in most countries in this region. Therefore, one of the primary challenges in the LAC region the development of a good rainfall forecasting model that can be used in an early warning system (EWS) or a flood early warning system (FEWS). The aim of this study was to provide an effective forecast of short-term rainfall using a set of climatic variables, based on the Clausius–Clapeyron relationship and taking into account that atmospheric water vapor is one of the variables that determine most meteorological phenomena, particularly regarding precipitation. As a consequence, a simple precipitation forecast model was proposed from data monitored at every minute, such as humidity, surface temperature, atmospheric pressure, and dewpoint. With access to a historical database of 1237 storms, the proposed model allows use of the right combination of these variables to make an accurate forecast of the time of storm onset. The results indicate that the proposed methodology was capable of predicting precipitation onset as a function of the atmospheric pressure, humidity, and dewpoint. The synoptic forecast model was implemented as a hydroinformatics tool in the Extreme Precipitation Monitoring Network of the city of Queretaro, Mexico (RedCIAQ). The improved forecasts provided by the proposed methodology are expected to be useful to support disaster warning systems all over Mexico, mainly during hurricanes and flashfloods.

Publisher

MDPI AG

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3