Potential of Salt Caverns for Hydrogen Storage in Southern Ontario, Canada

Author:

Hui Shasha123,Yin Shunde3,Pang Xiongqi12,Chen Zhuoheng4ORCID,Shi Kanyuan12ORCID

Affiliation:

1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum-Beijing, Beijing, 102249, China

2. College of Geosciences, China University of Petroleum-Beijing, Beijing, 102249, China

3. Department of Civil and Enviromental Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada

4. Geological Survey of Canada, Calgary, AB T2L 2A7, Canada

Abstract

Salt caverns produced by solution mining in Southern Ontario provide ideal spaces for gas storage due to their low permeability. Underground hydrogen storage (UHS) is an important part of the future renewable energy market in Ontario in order to achieve global carbon neutrality and to fill the gap left by retiring nuclear power plants. However, large-scale hydrogen storage is still restricted by limited storage space on the ground’s surface. In this study, hydrogen’s physical and chemical properties are first introduced and characterized by low molecular weight, high diffusivity, low solubility, and low density. Then, the geological conditions of the underground reservoirs are analyzed, especially salt caverns. Salt caverns, with their inert cavity environments and stable physical properties, offer the most promising options for future hydrogen storage. The scales, heights, and thicknesses of the roof and floor salt layers and the internal temperatures and pressures conditions of salt caverns can affect stabilities and storage capacities. Finally, several potential problems that may affect the safe storage of hydrogen in salt caverns are discussed. Through the comprehensive analysis of the influencing factors of hydrogen storage in salt caverns, this study puts forward the most appropriate development strategy for salt caverns, which provides theoretical guidance for UHS in the future and helps to reduce the risk of large-scale storage design.

Publisher

MDPI AG

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3