Implications of White Light-Emitting Diode-Based Photoirradiation on Green Synthesis of Silver Nanoparticles by Methanol- and Aqueous-Based Extracts of Bergenia ciliata Leaves

Author:

Gurung Sourav1,Sarmin Monalisha1ORCID,Hoda Muddasarul1ORCID

Affiliation:

1. Nanobiotechnology and Applied Phytochemistry Lab, Department of Biological Sciences, Aliah University, Kolkata 700160, India

Abstract

Bergenia ciliata (BC) is a perennial herb that is frequently used as a traditional medicine. Its leaves and rhizomes are reported to have significant antioxidant, metal-reducing, and chelating properties. Although the rhizomes have the potential to synthesize silver nanoparticles (AgNPs), the leaves are yet to be studied for the green synthesis of metal nanoparticles. Likewise, photoirradiation also plays a significant role in the green synthesis of metal nanoparticles. In the current study, we intended to demonstrate the implications of photoirradiation by white light-emitting diode (LED) on the aqueous and methanol extracts (AE and ME, respectively) of BC leaf-mediated green synthesis of AgNPs. In this regard, the AgNP synthesis of the two extracts was performed in the dark and under 250-lumen (lm) and 825 lm LED bulbs. The physicochemical characterization of the synthesized nanoparticles was also performed, wherein percent nanoparticles yield, morphology of the nanoparticles, shape, size, percent elemental composition, crystallinity, and nanoparticle stability were studied. The nanoparticle-synthesizing potential of the two extracts contradicted significantly in the presence and absence of light, while the AE produced a significantly high number of nanoparticles in the dark (17.26%), and increasing light intensities only attenuated the nanoparticle synthesis, whereas ME synthesized comparatively negligible silver nanoparticles in the dark (1.23%). However, increasing light intensities significantly enhanced the number of nanoparticles synthesized in 825 lms (7.41%). The GCMS analysis further gave a comparative insight into the phytochemical composition of both extracts, wherein catechol and pyrogallol were identified as major reducing agents for nanoparticle synthesis. The influence of light intensities on the physiochemical characterization of AgNPs was predominant. While the size of both the AE- and ME-mediated AgNPs increased considerably (20–50 nm diameter) with increasing light intensities, the percent of silver atoms decreased significantly with increasing light intensities in both the AE- and ME-mediated AgNPs with ranges of 13–18% and 14–24%, respectively. The nanoparticle stability studies suggested that both the AE- and ME-mediated AgNPs were stable for up to 15 days when stored at 4 °C. The stability of both nanoparticles was attributed to the presence of a wide range of phytochemicals. In conclusion, the AE of BC leaves was reported to have significantly higher AgNP-synthesizing potential as compared to the ME. However, AE-mediated AgNP synthesis is attenuated by photoirradiation, whereas ME-mediated AgNP synthesis is enhanced by photoirradiation. The photoirradiation by white LED light increases the size of the AgNPs, while the percent silver composition declines, irrespective of the extract type. Both extracts, however, have nanoparticle stabilizing potential, thereby producing stable nanoparticles.

Funder

Ministry of Minority affairs and Madrasah education, Government of West Bengal, India

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3