Human Serum Albumin Protein Corona in Prussian Blue Nanoparticles

Author:

Colombi Chiara1ORCID,Dacarro Giacomo1ORCID,Diaz Fernandez Yuri Antonio1ORCID,Taglietti Angelo1ORCID,Pallavicini Piersandro1ORCID,Doveri Lavinia1ORCID

Affiliation:

1. Dipartimento di Chimica, Università degli Studi di Pavia, v. Taramelli, 12, 27100 Pavia, Italy

Abstract

Prussian Blue nanoparticles (PBnps) are now popular in nanomedicine thanks to the FDA approval of PB. Despite the numerous papers suggesting or describing the in vivo use of PBnps, no studies have been carried out on the formation of a protein corona on the PBnp surface and its stabilizing role. In this paper, we studied qualitatively and quantitatively the corona formed by the most abundant protein of blood, human serum albumin (HSA). Cubic PBnps (41 nm side), prepared in citric acid solution at PB concentration 5 × 10−4 M, readily form a protein corona by redissolving ultracentrifuged PBnp pellets in HSA solutions, with CHSA ranging from 0.025 to 7.0 mg/mL. The basic decomposition of PBnp@HSA was studied in phosphate buffer at the physiological pH value of 7.4. Increased stability with respect to uncoated PBnps was observed at all concentrations, but a minimum CHSA value of 3.0 mg/mL was determined to obtain stability identical to that observed at serum-like HSA concentrations (35–50 mg/mL). Using a modified Lowry protocol, the quantity of firmly bound HSA in the protein corona (hard corona) was determined for all the CHSA used in the PBnp@HSA synthesis, finding increasing quantities with increasing CHSA. In particular, an HSA/PBnp number in the 1500–2300 range was found for CHSA 3.0–7.0 mg/mL, largely exceeding the 180 HSA/PBnp value calculated for an HSA monolayer on a PBnp. Finally, the stabilization brought by the HSA corona allowed us to carry out pH-spectrophotometric titrations on PBnp@HSA in the 3.5-9-0 pH range, revealing a pKa value of 6.68 for the water molecules bound to the Fe3+ centers on the PBnp surface, whose deprotonation is responsible for the blue-shift of the PBnp band from 706 nm (acidic solution) to 685 nm (basic solution).

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3