Simulating the Trajectory and Biomass Growth of Free-Floating Macroalgal Cultivation Platforms along the U.S. West Coast

Author:

Whiting Jonathan M.,Wang TaipingORCID,Yang Zhaoqing,Huesemann Michael H.,Wolfram Phillip J.,Mumford Thomas F.ORCID,Righi DylanORCID

Abstract

Trajectory tracking and macroalgal growth models were coupled to support a novel macroalgae-harvesting concept known as the Nautical Off-shore Macroalgal Autonomous Device (NOMAD). The NOMAD consists of 5 km long carbon-fiber longlines that are seeded and free float southward along the U.S. West Coast for approximately 3 months before harvesting off the California coast, taking advantage of favorable environmental conditions. The trajectory and macroalgal growth models were applied to answer planning questions pertinent to the techno-economic analysis such as identifying the preferred release location, approximate pathway, timing until harvest, and estimated growth. Trajectories were determined with the General NOAA Operational Modeling Environment (GNOME) model, using 11 years of current and wind data, determining probabilities by running nearly 40,000 Monte Carlo simulations varying the start time and location. An accompanying macroalgal growth model was used to estimate the growth of macroalgae based on the trajectory tracks and environmental forcing products, including light, temperature and nutrients. Model results show that NOMAD lines transit south in the months of April to September due to seasonal currents, taking approximately 3 months to reach Southern California. During transit, NOMAD lines are dispersed but typically avoid beaching or passing through marine sanctuaries. NOMAD lines can yield up to 30 kg wet weight per meter of cultivation line.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3