Toward a Highly Accurate Classification of Underwater Cable Images via Deep Convolutional Neural Network

Author:

Thum Guan WeiORCID,Tang Sai Hong,Ahmad Siti Azfanizam,Alrifaey MoathORCID

Abstract

Underwater cables or pipelines are commonly utilized elements in ocean research, marine engineering, power transmission, and communication-based activities. Their performance necessitates regularly conducted inspection for maintenance purposes. A vision system is commonly used by autonomous underwater vehicles (AUVs) to track and search for underwater cable. Its traditional methods are characteristically applicable in AUVs, wherein they are equipped with handcrafted features and shallow trainable architectures. However, such methods are subpar or even incapable of tracking underwater cable in fast-changing and complex underwater conditions. In contrast to this, the deep learning method is linked with the capacity to learn semantic, high-level, and deeper features, thus rendering it recommended for performing underwater cable tracking. In this study, several deep Convolutional Neural Network (CNN) models were proposed to classify underwater cable images obtained from a set of underwater images, whereby transfer learning and data augmentation were applied to enhance the classification accuracy. Following a comparison and discussion regarding the performance of these models, MobileNetV2 outperformed among other models and yielded lower computational time and the highest accuracy for classifying underwater cable images at 93.5%. Hence, the main contribution of this study is geared toward developing a deep learning method for underwater cable image classification.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference56 articles.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Probabilistic Positioning of a Mooring Cable in Sonar Images for In-Situ Calibration of Marine Sensors;IEEE Transactions on Mobile Computing;2024-09

2. The application of deep learning in pipeline inspection: current status and challenges;Ships and Offshore Structures;2024-07-11

3. IMAGE FEATURE EXTRACTION METHODS FOR STRUCTURE DETECTION FROM UNDERWATER IMAGERY;The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences;2023-12-13

4. Magnetic Gradient Tensor Positioning Method Implemented on an Autonomous Underwater Vehicle Platform;Journal of Marine Science and Engineering;2023-10-02

5. Development of a Cascade Intelligent System for Path Planning of the Group of Marine Robotic Complexes;Journal of Marine Science and Engineering;2023-03-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3