Abstract
The relationship between the ciguatoxin-producer benthic dinoflagellate Gambierdiscus and other epibenthic dinoflagellates in the Canary Islands was examined in macrophyte samples obtained from two locations of Fuerteventura Island in September 2016. The genera examined included Coolia, Gambierdiscus, Ostreopsis, Prorocentrum, Scrippsiella, Sinophysis, and Vulcanodinium. Distinct assemblages among these benthic dinoflagellates and preferential macroalgal communities were observed. Vulcanodinium showed the highest cell concentrations (81.6 × 103 cells gr−1 wet weight macrophyte), followed by Ostreopsis (25.2 × 103 cells gr−1 wet weight macrophyte). These two species were most represented at a station (Playitas) characterized by turfy Rhodophytes. In turn, Gambierdiscus (3.8 × 103 cells gr−1 wet weight macrophyte) and Sinophysis (2.6 × 103 cells gr−1 wet weight macrophyte) were mostly found in a second station (Cotillo) dominated by Rhodophytes and Phaeophytes. The influence of macrophyte’s thallus architecture on the abundance of dinoflagellates was observed. Filamentous morphotypes followed by macroalgae arranged in entangled clumps presented more richness of epiphytic dinoflagellates. Morphometric analysis was applied to Gambierdiscus specimens. By large, G. excentricus was the most abundant species and G. australes occupied the second place. The toxigenic potential of some of the genera/species distributed in the benthic habitats of the Canary coasts, together with the already known presence of ciguatera in the region, merits future studies on possible transmission of their toxins in the marine food chain.
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering