Hybrid Partition-Based Patrolling Scheme for Maritime Area Patrol with Multiple Cooperative Unmanned Surface Vehicles

Author:

Xie Jiajia,Zhou Rui,Luo Jun,Peng YanORCID,Liu YuanORCID,Xie Shaorong,Pu Huayan

Abstract

Multi-robot cooperative patrolling systems have been extensively employed in the civilian and military fields, including monitoring forest fires, marine search-and-rescue, and area patrol. Multi-robot area patrol problems refer to the activity that a team of robots works cooperatively and regularly to visit the key targets in the given area for security. Following consideration of the low cost and high safety of unmanned surface vehicles (USV), a team of USVs is organized to perform area patrol in a sophisticated maritime environment. In this paper, we establish a mathematical model considering the characteristics of the cooperative patrol task and the limited conditions of USVs. A hybrid partition-based patrolling scheme is proposed for a multi-USV system to visit targets with different importance levels in a maritime area. Firstly, a centralized area partition algorithm is utilized to partition the patrolling area according to the number of USVs. Secondly, a distributed path planning algorithm is applied to planning the patrolling path for each USV to visit the targets in a maritime environment to minimize the length of the patrolling path for the USV team. Finally, comparative experiments between the proposed scheme and other methods are carried out to validate the performance of the hybrid partition-based patrolling scheme. Simulation results and experimental analysis show the efficiency of the proposed hybrid partition-based patrolling scheme compared to several previous patrolling algorithms.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference26 articles.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cooperative target allocation for air-sea heterogeneous unmanned vehicles against saturation attacks;Journal of the Franklin Institute;2024-02

2. Solving Heterogeneous USV Scheduling Problems by Problem-Specific Knowledge Based Meta-Heuristics with Q-Learning;Mathematics;2024-01-19

3. Ship Route Planning Based on Improved Fluent Streamline Algorithm;2023 13th International Conference on Information Science and Technology (ICIST);2023-12-08

4. CTSTC: An Energy-Efficient Coverage Path Planning Algorithm for Unmanned Surface Vehicles;2023 IEEE International Conference on Robotics and Biomimetics (ROBIO);2023-12-04

5. Collaborative Coverage Strategy for Multiple UAVs Considering Coverage Utility;2023 International Conference on Advanced Robotics and Mechatronics (ICARM);2023-07-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3