Geometrical Analysis of the Inland Topography to Assess the Likely Response of Wave-Dominated Coastline to Sea Level: Application to Great Britain

Author:

Payo AndresORCID,Williams Chris,Vernon Rowan,Hulbert Andrew G.,Lee Kathryn A.,Lee Jonathan R.

Abstract

The need for quantitative assessments at a large spatial scale (103 km) and over time horizons of the order 101 to 102 years have been reinforced by the 2019 Special Report on the Ocean and Cryosphere in a Changing Climate, which concluded that adaptation to a sea-level rise will be needed no matter what emission scenario is followed. Here, we used a simple geometrical analysis of the backshore topography to assess the likely response of any wave-dominated coastline to a sea-level rise, and we applied it along the entire Great Britain (GB) coastline, which is ca. 17,820 km long. We illustrated how the backshore geometry can be linked to the shoreline response (rate of change and net response: erosion or accretion) to a sea-level rise by using a generalized shoreline Exner equation, which includes the effect of the backshore slope and differences in sediment fractions within the nearshore. To apply this to the whole of GB, we developed an automated delineation approach to extract the main geometrical attributes. Our analysis suggests that 71% of the coast of GB is best described as gentle coast, including estuarine coastline or open coasts where back-barrier beaches can form. The remaining 39% is best described as cliff-type coastlines, for which the majority (57%) of the backshore slope values are negative, suggesting that a non-equilibrium trajectory will most likely be followed as a response to a rise in sea level. For the remaining 43% of the cliffed coast, we have provided regional statistics showing where the potential sinks and sources of sediment are likely to be.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference20 articles.

1. Coastal geomorphology: trends and challenges

2. Appropriate complexity for the prediction of coastal and estuarine geomorphic behaviour at decadal to centennial scales

3. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate;Mingle,2020

4. The Bruun Rule of Erosion by Sea- Level Rise: A Discussion on Large- Scale Two- and Three- Dimensional Usages;Bruun;J. Coast. Res.,1988

5. Beach Nourishment: Theory and Practice;Dean,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3