Interface Compositions as Determinants of Resveratrol Stability in Nanoemulsion Delivery Systems

Author:

Mora-Gutierrez Adela,Attaie Rahmat,Núñez de González Maryuri T.,Jung Yoonsung,Marquez Sixto A.

Abstract

The incorporation of hydrophobic ingredients, such as resveratrol (a fat-soluble phytochemical), in nanoemulsions can increase the water solubility and stability of these hydrophobic ingredients. The nanodelivery of resveratrol can result in a marked improvement in the bioavailability of this health-promoting ingredient. The current study hypothesized that resveratrol can bind to caprine casein, which may result in the preservation of the biological properties of resveratrol. The fluorescence spectra provided proof of this complex formation by demonstrating that resveratrol binds to caprine casein in the vicinity of tryptophan amino acid residues. The caprine casein/resveratrol complex is stabilized by hydrophobic interactions and hydrogen bonds. Hence, to study the rate of resveratrol degradation during processing/storage, resveratrol losses were determined by reversed-phase high performance liquid chromatography (RP-HPLC) in nanoemulsions stabilized by bovine and caprine caseins individually and in combination with polysorbate-20. At 48 h oxidation, 88.33% and 89.08% was left of resveratrol in the nanoemulsions stabilized by caprine casein (αs1-I)/polysorbate-20 complex and caprine (αs1-II)/polysorbate-20 complex, while there was less resveratrol left in the nanoemulsions stabilized by bovine casein/polysorbate-20 complex, suggesting that oxygen degradation was involved. The findings of this study are crucial for the food industry since they imply the potential use of caprine casein/polysorbate-20 complex to preserve the biological properties of resveratrol.

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health(social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3