Seed Harvesting and Climate Change Interact to Affect the Natural Regeneration of Pinus koraiensis

Author:

Liu Kai1,Sun Hang1,He Hong S.2,Guan Xin3

Affiliation:

1. Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China

2. School of Natural Resources, University of Missouri, 203 ABNR Bldg, Columbia, MO 65211, USA

3. Jilin Provincial Experimental School, Changchun 130022, China

Abstract

The poor natural regeneration of Pinus koraiensis is a key limitation for restoring the primary mixed Pinus koraiensis forests. Seed harvesting and climate change are the important factors that influence the natural regeneration of Pinus koraiensis; however, it is hard to illustrate how, in synergy, they affect its regeneration at the landscape scale. In this study, we coupled an ecosystem process model, LINKAGES, with a forest landscape model, LANDIS PRO, to evaluate how seed harvesting and climate change influenced the natural regeneration of Pinus koraiensis over large temporal and spatial scales. Our results showed that seed harvesting decreased the abundance of Pinus koraiensis juveniles by 1, 14, and 18 stems/ha under the historical climate, and reduced by 1, 17, and 24 stems/ha under the future climate in the short- (years 0–50), medium- (years 60–100), and long-term (years 110–150), respectively. This indicated that seed harvesting intensified the poor regeneration of Pinus koraiensis, irrespective of climate change. Our results suggested that seed harvesting diminished the generation capacity of Pinus koraiensis over the simulation period. Seed harvesting reduced the abundance of Pinus koraiensis at the leading edge and slowed down its shift into high-latitude regions to adapt to climate change. Our results showed that the effect magnitudes of seed harvesting, climate change, their interaction and combination at the short-, medium- and long-term were −61.1%, −78.4%, and −85.7%; 16.5%, 20.9%, and 38.2%; −10.1%, −16.2% and −32.0%; and −54.7%, −73.8%, and −79.5%, respectively. Seed harvesting was a predominant factor throughout the simulation; climate change failed to offset the negative effect of seed harvesting, but the interactive effect between seed harvesting and climate change almost overrode the positive effect of climate change. Seed harvesting, climate change, and their interaction jointly reduced the natural regeneration of Pinus koraiensis. We suggest reducing the intensity of seed harvesting and increasing silvicultural treatments, such as thinning and artificial plantation, to protect and restore the primary mixed Pinus koraiensis forests.

Funder

the Natural Science Foundation of Jilin Province, China

the National Natural Science Foundation of China

the Joint Fund of National Natural Science Foundation of China

the National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3