High-Sensitivity, Quantified, Linear and Mediator-Free Resonator-Based Microwave Biosensor for Glucose Detection

Author:

Kumar Alok,Wang CongORCID,Meng Fan-Yi,Zhou Zhong-Liang,Zhao Meng,Yan Guo-Feng,Kim Eun-SeongORCID,Kim Nam-YoungORCID

Abstract

This article presents a high-sensitivity, quantified, linear, and mediator-free resonator-based microwave biosensor for glucose sensing application. The proposed biosensor comprises an air-bridge-type asymmetrical differential inductor (L) and a center-loaded circular finger-based inter-digital capacitor (C) fabricated on Gallium Arsenide (GaAs) substrate using advanced micro-fabrication technology. The intertwined asymmetrical differential inductor is used to achieve a high inductance value with a suitable Q-factor, and the centralized inter-digital capacitor is introduced to generate an intensified electric field. The designed microwave sensor is optimized to operate at a low resonating frequency that increases the electric field penetration depth and interaction area in the glucose sample. The microwave biosensor is tested with different glucose concentrations (0.3–5 mg/ml), under different ambient temperatures (10–50 °C). The involvement of advanced micro-fabrication technology effectively miniaturized the microwave biosensor (0.006λ0 × 0.005λ0) and enhanced its filling factor. The proposed microwave biosensor demonstrates a high sensitivity of 117.5 MHz/mgmL-1 with a linear response (r2 = 0.9987), good amplitude variation of 0.49 dB/mgmL-1 with a linear response (r2 = 0.9954), and maximum reproducibility of 0.78% at 2 mg/mL. Additionally, mathematical modelling was performed to estimate the dielectric value of the frequency-dependent glucose sample. The measured and analyzed results indicate that the proposed biosensor is suitable for real-time blood glucose detection measurements.

Funder

Postdoctoral Science Foundation of Jiangsu Province

Heilongjiang Postdoctoral Science Foundation

National Natural Science Foundation of China

Zhejiang Lab

Natural Science Foundation of Zhejiang Province

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3