Separation of Partial Discharge Sources Measured in the High-Frequency Range with HFCT Sensors Using PRPD-teff Patterns

Author:

Albarracín-Sánchez RicardoORCID,Álvarez-Gómez FernandoORCID,Vera-Romero Carlos A.,Rodríguez-Serna Johnatan M.

Abstract

During the last two decades, on-line partial discharge (PD) measurements have been proven as a very efficient test to evaluate the insulation condition of high-voltage (HV) installations in service. Among the different PD-measuring techniques, the non-conventional electromagnetic methods are the most used due to their effectiveness and versatility. However, there are two main difficulties to overcome in on-line PD measurements when these methods are applied: the ambient electric noise and the simultaneous presence of various types of PD or pulse-shaped signals in the HV facility to be evaluated. A practical and effective method is presented to separate and identify PD sources acting simultaneously in HV systems under test. This method enables testers to carry out a first accurate diagnosis of the installation while performing the measurements in situ with non-invasive high-frequency current transformers (HFCT) used as sensors. The data acquisition in real-time reduces the time of postprocessing by an expert. This method was implemented in a Matlab application named PRPD-time tool, which consists of the analysis of the Phase-Resolved Partial Discharge (PRPD) pattern in combination with two types of interactive graphic representations. These graphical depictions are obtained including a feature parameter, effective time (teff), related to the duration of single measured pulses as a third axis incorporated in a classical PRPD representation, named the PRPD-teff pattern. The resulting interactive diagrams are complementary and allow the pulse source separation of pulses and clustering. The effectiveness of the proposed method and the developed Matlab application for separating PD sources is demonstrated with a practical laboratory experiment where various PD sources and pulse-type noise interferences were simultaneously measured.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3