Vibrational Transportation on a Platform Subjected to Sinusoidal Displacement Cycles Employing Dry Friction Control

Author:

Kilikevičius SigitasORCID,Fedaravičius Algimantas

Abstract

Currently used vibrational transportation methods are usually based on asymmetries of geometric, kinematic, wave, or time types. This paper investigates the vibrational transportation of objects on a platform that is subjected to sinusoidal displacement cycles, employing periodic dynamic dry friction control. This manner of dry friction control creates an asymmetry, which is necessary to move the object. The theoretical investigation on functional capabilities and transportation regimes was carried out using a developed parametric mathematical model, and the control parameters that determine the transportation characteristics such as velocity and direction were defined. To test the functional capabilities of the proposed method, an experimental setup was developed, and experiments were carried out. The results of the presented research indicate that the proposed method ensures smooth control of the transportation velocity in a wide range and allows it to change the direction of motion. Moreover, the proposed method offers other new functional capabilities, such as a capability to move individual objects on the same platform in opposite directions and at different velocities at the same time by imposing different friction control parameters on different regions of the platform or on different objects. In addition, objects can be subjected to translation and rotation at the same time by imposing different friction control parameters on different regions of the platform. The presented research extends the classical theory of vibrational transportation and has a practical value for industries that operate manufacturing systems performing tasks such as handling and transportation, positioning, feeding, sorting, aligning, or assembling.

Funder

Lietuvos Mokslo Taryba

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3