Affiliation:
1. School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
2. Polytechnic Institute, Zhejiang University, Hangzhou 310015, China
Abstract
An adaptive control of phase lock oscillator (PLO) is proposed to increase the ability of LCC-based HVDC systems to successfully recover from commutation failure, where the dynamic performance during the recovery process is improved. The phase lock oscillator is one of the most important parts of the control system, which is used to trace the phase angle of commutating voltage. However, the PLO with constant parameters cannot provide accurate information under both steady-state operation and large disturbances. In our work, the control parameters of PLO can be adaptively adjusted, following the states of commutating voltage. When the system is operating in a steady state, the PLO selects parameters that exhibit improved small-signal stability, while parameters prioritizing dynamic behaviors with high-tracing accuracy are adopted during large disturbances. Case studies based on simulations in PSCAD/EMTDC and RT-LAB show that the proposed control strategy can improve the performance of fault recovery from CF.
Funder
“Pioneer” and “Leading Goose” R&D Program of Zhejiang
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献