Generalized Regression Neural Network Based Meta-Heuristic Algorithms for Parameter Identification of Proton Exchange Membrane Fuel Cell

Author:

He Peng1,Zhou Xin1,Liu Mingqun1,Xu Kewei1,Meng Xian1,Yang Bo2

Affiliation:

1. Electric Power Science Institute, Yunnan Power Grid Co., Ltd., Kunming 650000, China

2. Faculty of Electric Power Engineering, Kunming University of Science and Technology, Kunming 650500, China

Abstract

An accurate parameter extraction of the proton exchange membrane fuel cell (PEMFC) is crucial for establishing a reliable cell model, which is also of great significance for subsequent research on the PEMFC. However, because the parameter identification of the PEMFC is a nonlinear optimization problem with multiple variables, peaks, and a strong coupling, it is difficult to solve this problem using traditional numerical methods. Furthermore, because of insufficient current and voltage data measured by the PEMFC, the precision rate of cell parameter extraction is also very low. The study proposes a parameter extraction method using a generalized regression neural network (GRNN) and meta-heuristic algorithms (MhAs). First of all, a GRNN is used to de-noise and predict the data to solve the problems in the field of PEMFC, which include insufficient data and excessive noise data of the measured data. After that, six typical algorithms are used to extract the parameters of the PEMFC under three operating conditions, namely high temperature and low pressure (HTLP), medium temperature and medium pressure (MTMP), and low temperature and high pressure (LTHP). The last results demonstrate that the application of GRNN can prominently decrease the influence of data noise on parameter identification, and after data prediction, it can greatly enhance the precision rate and reliability of MhAs parameter identification, specifically, under HTLP conditions, the V-I fitting accuracy achieved 99.39%, the fitting accuracy was 99.07% on MTMP, and the fitting accuracy was 98.70%.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3