Numerical Analysis of Tar and Syngas Formation during the Steam Gasification of Biomass in a Fluidized Bed

Author:

Hashemisohi Abolhasan1,Wang Lijun2,Shahbazi Abolghasem2

Affiliation:

1. Department of Computational Data Science and Engineering, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA

2. Department of Natural Resources and Environmental Design, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA

Abstract

A sequential modular hydrodynamic model integrated with detailed reaction kinetics (SMHM-RK) was developed and validated to predict tar and syngas components produced by the steam gasification of biomass in a fluidized bed gasifier. The simulations showed that the prediction accuracy is sensitive to both models for hydrodynamics and reaction kinetics. The simulations showed that the tar composition predicted by the SMHM-RK was more close to the measured values than those predicted by the well-mixed hydrodynamic model integrated with the same reaction kinetics (WMHM-RK). The predictions showed that the total tar decreased, but the polycyclic aromatic tar compounds increased with the increase in gasification temperature. There was an optimum steam-to-biomass ratio (SBR) for minimizing tar formation. The simulations found that the contents of total tar and heavy tar compounds decreased by increasing the SBR from 0.3 to 0.9, and then increased by further increasing the SBR. The injection of a small amount of oxygen in steam gasification cannot reduce tar formation. The injection of oxygen in steam gasification changed the reaction pathways of naphthalene to produce more naphthalene in the syngas. The de-volatilization rate affects pyrolytic volatile compositions and subsequent tar formation. Therefore, biomass devolatilization and homogeneous gas reactions should be solved simultaneously to accurately predict the syngas and tar composition.

Funder

U.S National Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3