MLGNet: Multi-Task Learning Network with Attention-Guided Mechanism for Segmenting Agricultural Fields

Author:

Luo Weiran12,Zhang Chengcai12,Li Ying34,Yan Yaning12

Affiliation:

1. School of Water Conservancy and Civil Engineering, Zhengzhou University, Zhengzhou 450001, China

2. Yellow River Laboratory, Zhengzhou University, Zhengzhou 450001, China

3. Henan Institute of Meteorological Sciences, Zhengzhou 450003, China

4. CMA·Henan Agrometeorological Support and Applied Technique Key Laboratory, Zhengzhou 450003, China

Abstract

The implementation of precise agricultural fields can drive the intelligent development of agricultural production, and high-resolution remote sensing images provide convenience for obtaining precise fields. With the advancement of spatial resolution, the complexity and heterogeneity of land features are accentuated, making it challenging for existing methods to obtain structurally complete fields, especially in regions with blurred edges. Therefore, a multi-task learning network with attention-guided mechanism is introduced for segmenting agricultural fields. To be more specific, the attention-guided fusion module is used to learn complementary information layer by layer, while the multi-task learning scheme considers both edge detection and semantic segmentation task. Based on this, we further segmented the merged fields using broken edges, following the theory of connectivity perception. Finally, we chose three cities in The Netherlands as study areas for experimentation, and evaluated the extracted field regions and edges separately, the results showed that (1) The proposed method achieved the highest accuracy in three cities, with IoU of 91.27%, 93.05% and 89.76%, respectively. (2) The Qua metrics of the processed edges demonstrated improvements of 6%, 6%, and 5%, respectively. This work successfully segmented potential fields with blurred edges, indicating its potential for precision agriculture development.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Henan Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3