Affiliation:
1. Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA
Abstract
We assess the viability of deploying commercially available multispectral and thermal imagers designed for integration on small uncrewed aerial systems (sUASs, <25 kg) on a mid-size Group-3-classification UAS (weight: 25–600 kg, maximum altitude: 5486 m MSL, maximum speed: 128 m/s) for the purpose of collecting a higher spatial resolution dataset that can be used for evaluating the surface energy budget and effects of surface heterogeneity on atmospheric processes than those datasets traditionally collected by instrumentation deployed on satellites and eddy covariance towers. A MicaSense Altum multispectral imager was deployed on two very similar mid-sized UASs operated by the Atmospheric Radiation Measurement (ARM) Aviation Facility. This paper evaluates the effects of flight on imaging systems mounted on UASs flying at higher altitudes and faster speeds for extended durations. We assess optimal calibration methods, acquisition rates, and flight plans for maximizing land surface area measurements. We developed, in-house, an automated workflow to correct the raw image frames and produce final data products, which we assess against known spectral ground targets and independent sources. We intend this manuscript to be used as a reference for collecting similar datasets in the future and for the datasets described within this manuscript to be used as launching points for future research.
Funder
Office of Biological and Environmental Research (OBER) at the US Department of Energy
Battelle operates the Pacific Northwest National Laboratory (PNNL) for the DOE
PNNL project
Subject
General Earth and Planetary Sciences