Converging Channel Attention Mechanisms with Multilayer Perceptron Parallel Networks for Land Cover Classification

Author:

Fan Xiangsuo12ORCID,Li Xuyang1ORCID,Yan Chuan1ORCID,Fan Jinlong3,Chen Lin1,Wang Nayi1

Affiliation:

1. School of Automation, Guangxi University of Science and Technology, Liuzhou 545006, China

2. Guangxi Collaborative Innovation Centre for Earthmoving Machinery, Guangxi University of Science and Technology, Liuzhou 545006, China

3. National Satellite Meteorological Center, China Meteorological Administration, Beijing 100081, China

Abstract

This paper proposes a network structure called CAMP-Net, which considers the problem that traditional deep learning algorithms are unable to manage the pixel information of different bands, resulting in poor differentiation of feature representations of different categories and causing classification overfitting. CAMP-Net is a parallel network that, firstly, enhances the interaction of local information of bands by grouping the spectral nesting of the band information and then proposes a parallel processing model. One branch is responsible for inputting the features, normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) band information generated by grouped nesting into the ViT framework, and enhancing the interaction and information flow between different channels in the feature map by adding the channel attention mechanism to realize the expressive capability of the feature map. The other branch assists the network’s ability to enhance the extraction of different feature channels by designing a multi-layer perceptron network based on the utilization of the feature channels. Finally, the classification results are obtained by fusing the features obtained by the channel attention mechanism with those obtained by the MLP to achieve pixel-level multispectral image classification. In this study, the application of the algorithm was carried out in the feature distribution of South County, Yiyang City, Hunan Province, and the experiments were conducted based on 10 m Sentinel-2 multispectral RS images. The experimental results show that the overall accuracy of the algorithm proposed in this paper is 99.00% and the transformer (ViT) is 95.81%, while the performance of the algorithm in the Sentinel-2 dataset was greatly improved for the transformer. The transformer shows a huge improvement, which provides research value for developing a land cover classification algorithm for remote sensing images.

Funder

National Natural Science Foundation of China

Guangxi University of Science and Technology Graduate Education

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3