Affiliation:
1. School of Automation (School of Artificial Intelligence), Hangzhou Dianzi University, Hangzhou 310018, China
Abstract
This paper presents a tracking algorithm for joint estimation of direction of arrival (DOA) and polarization parameters, which exhibit dynamic behavior due to the movement of signal source carriers. The proposed algorithm addresses the challenge of real-time estimation in multi-target scenarios with an unknown number. This algorithm is built upon the Multi-target Multi-Bernoulli (MeMBer) filter algorithm, which makes use of a sensor array called Circular Orthogonal Double-Dipole (CODD). The algorithm begins by constructing a Minimum Description Length (MDL) principle, taking advantage of the characteristics of the polarization-sensitive array. This allows for adaptive estimation of the number of signal sources and facilitates the separation of the noise subspace. Subsequently, the joint parameter Multiple Signal Classification (MUSIC) spatial spectrum function is employed as the pseudo-likelihood function, overcoming the limitations imposed by unknown prior information constraints. To approximate the posterior distribution of MeMBer filters, Sequential Monte Carlo (SMC) method is utilized. The simulation results demonstrate that the proposed algorithm achieves excellent tracking accuracy in joint DOA-polarization parameter estimation, whether in scenarios with known or unknown numbers of signal sources. Moreover, the algorithm demonstrates robust tracking convergence even under low Signal-to-Noise Ratio (SNR) conditions.
Funder
Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献