Reliability of GPM IMERG Satellite Precipitation Data for Modelling Flash Flood Events in Selected Watersheds in the UAE

Author:

Hamouda Mohamed A.12ORCID,Hinge Gilbert3ORCID,Yemane Henok S.1,Al Mosteka Hasan1,Makki Mohammed1,Mohamed Mohamed M.12ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates

2. National Water and Energy Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates

3. Department of Civil Engineering, National Institute of Technology Durgapur, Durgapur 713209, India

Abstract

Arid regions are prone to unprecedented extreme rainfall events that often result in severe flash floods. Using near-real-time precipitation data in hydrological modelling can aid in flood preparedness. This study analyzed rainfall data obtained from Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG V. 06) since 2001 to highlight recent trends of extreme rainfall indices for three selected watersheds in the UAE. Additionally, to validate the trends, the present study incorporated CHIRPS (Climate Hazards Group InfraRed Precipitation with Station data) into the analysis. Furthermore, for the first time, this study assessed the performance of the three products of IMERG in modelling flash flood events in the selected watersheds of UAE. A physical-based, fully distributed model was used to simulate the heaviest storm event. Also, a sensitivity analysis of the model’s output to variations in the input parameters was conducted using the one-factor-at-a-time method. The result of the trend analysis indicated that IMERG and CHIRPS show similar trends in both datasets, indicating agreement and reliability in their observations. However, there are a few instances where IMERG and CHIRPS show slight discrepancies in the nature of the trend. In general, the trend analysis results indicated an increasing trend of total precipitation (mm) and consecutive wet days, which suggests a rise in the risk of flash floods. The simulation of the flash flood event showed that the IMERG final product outperformed the other two products, closely matching the model output of the gauge rainfall data with mean absolute error (MAE) of 1.5, 2.37, and 0.5 for Wadi Ham, Wadi Taween, and Wadi Maidaq, respectively. The model’s performance was positively correlated with the size of the watershed. The sensitivity analysis results demonstrated that the model’s output was most sensitive to infiltration parameters. The study’s outcomes provide a good opportunity to improve near-real-time impact evaluation of flash flood events in the watersheds of the UAE.

Funder

United Arab Emirates University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3