Acoustic Detection of Vaccine Reactions in Hens for Assessing Anti-Inflammatory Product Efficacy

Author:

Ginovart-Panisello Gerardo José12ORCID,Iriondo Ignasi1ORCID,Panisello Monjo Tesa2ORCID,Riva Silvia2,Cancer Jordi Casadó3,Alsina-Pagès Rosa Ma1ORCID

Affiliation:

1. Human Environment Research Group (HER), La Salle—Universitat Ramon Llull, C/Quatre Camins, 30, 08022 Barcelona, Spain

2. Cealvet SLu, C/Sant Josep de la Montanya 50-B, 43500 Tortosa, Spain

3. Avigan Terralta SL, Carretera Valencia T-331, Km 20.4, 43517 Vinallop, Spain

Abstract

Acoustic studies on poultry show that chicken vocalizations can be a real-time indicator of the health conditions of the birds and can improve animal welfare and farm management. In this study, hens vaccinated against infectious laryngotracheitis (ILT) were acoustically recorded for 3 days before vaccine administration (pre-reaction period) and also from vaccination onwards, with the first 5 days being identified as the “reaction period” and the 5 following days as “post reaction”. The raw audio was pre-processed to isolate hen calls and the 13 Mel-frequency cepstral coefficients; then, the spectral centroid and the number of vocalizations were extracted to build the acoustic dataset. The experiment was carried out on the same farm but in two different houses. The hens from one house were assigned to the control group, without administration of the anti-inflammatory product, and the other formed the treatment group. Both acoustic data sets were recorded and processed in the same way. The control group was used to acoustically model the animal reaction to the vaccine and we automatically detected the hens’ vaccine reactions and side effects through acoustics. From Scikit-Learn algorithms, Gaussian Naive Bayes was the best performing model, with a balanced accuracy of 80% for modeling the reactions and non-reactions caused by ILT in the control group. Furthermore, the importance of algorithm permutation highlighted that the centroid and MFCC4 were the most important features in acoustically detecting the ILT vaccine reaction. The fitted Gaussian Naive Bayes model allowed us to evaluate the treatment group to determine if the vocalizations after vaccine administration were detected as non-reactions, due to the anti-inflammatory product’s effectiveness. Of the sample, 99% of vocalizations were classified as non-reactions, due to the anti-inflammatory properties of the product, which reduced vaccine reactions and side effects. The non-invasive detection of hens’ responses to vaccination to prevent respiratory problems in hens described in this paper is an innovative method of measuring and detecting avian welfare.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3