Unraveling Convolution Neural Networks: A Topological Exploration of Kernel Evolution

Author:

Yang Lei1,Xu Mengxue1,He Yunan2

Affiliation:

1. College of Science, Chongqing University of Technology, Chongqing 400054, China

2. Mathematical Science Research Center, Chongqing University of Technology, Chongqing 400054, China

Abstract

Convolutional Neural Networks (CNNs) have become essential in deep learning applications, especially in computer vision, yet their complex internal mechanisms pose significant challenges to interpretability, crucial for ethical applications. Addressing this, our paper explores CNNs by examining their topological changes throughout the learning process, specifically employing persistent homology, a core method within Topological Data Analysis (TDA), to observe the dynamic evolution of their structure. This approach allows us to identify consistent patterns in the topological features of CNN kernels, particularly through shifts in Betti curves, which is a key concept in TDA. Our analysis of these Betti curves, initially focusing on the zeroth and first Betti numbers (respectively referred to as Betti-0 and Betti-1, which denote the number of connected components and loops), reveals insights into the learning dynamics of CNNs and potentially indicates the effectiveness of the learning process. We also discover notable differences in topological structures when CNNs are trained on grayscale versus color datasets, indicating the need for more extensive parameter space adjustments in color image processing. This study not only enhances the understanding of the intricate workings of CNNs but also contributes to bridging the gap between their complex operations and practical, interpretable applications.

Funder

Scientific Research Foundation of Chongqing University of Technology

Science and Technology Research Program of Chongqing Municipal Education Commission

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3