A Review of Current Trends, Techniques, and Challenges in Large Language Models (LLMs)

Author:

Patil Rajvardhan1ORCID,Gudivada Venkat2

Affiliation:

1. School of Computing, Grand Valley State University, Allendale Charter Township, MI 49401, USA

2. Computer Science Department, East Carolina University, Greenville, NC 27858, USA

Abstract

Natural language processing (NLP) has significantly transformed in the last decade, especially in the field of language modeling. Large language models (LLMs) have achieved SOTA performances on natural language understanding (NLU) and natural language generation (NLG) tasks by learning language representation in self-supervised ways. This paper provides a comprehensive survey to capture the progression of advances in language models. In this paper, we examine the different aspects of language models, which started with a few million parameters but have reached the size of a trillion in a very short time. We also look at how these LLMs transitioned from task-specific to task-independent to task-and-language-independent architectures. This paper extensively discusses different pretraining objectives, benchmarks, and transfer learning methods used in LLMs. It also examines different finetuning and in-context learning techniques used in downstream tasks. Moreover, it explores how LLMs can perform well across many domains and datasets if sufficiently trained on a large and diverse dataset. Next, it discusses how, over time, the availability of cheap computational power and large datasets have improved LLM’s capabilities and raised new challenges. As part of our study, we also inspect LLMs from the perspective of scalability to see how their performance is affected by the model’s depth, width, and data size. Lastly, we provide an empirical comparison of existing trends and techniques and a comprehensive analysis of where the field of LLM currently stands.

Publisher

MDPI AG

Reference106 articles.

1. Distributional structure;Harris;Word,1954

2. A statistical approach to machine translation;Brown;Comput. Linguist.,1990

3. Computer evaluation of indexing and text processing;Salton;J. ACM (JACM),1968

4. A statistical interpretation of term specificity and its application in retrieval;Jones;J. Doc.,1972

5. A vector space model for automatic indexing;Salton;Commun. ACM,1975

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3