Digital-Twin-Based System for Foam Cleaning Robots in Spent Fuel Pools

Author:

Li Manhua1,Chen Fubin1,Zhou Wuyun1

Affiliation:

1. School of Automation, Beijing Information Science and Technology University, Beijing 100101, China

Abstract

This paper introduces a digital-twin-based system for foam cleaning robots in spent fuel pools, aiming to efficiently clean foam in spent fuel pools. The system adopts a four-layer architecture, including the physical entity layer, twin data layer, twin model layer, and application service layer. Initially, the robot was modeled in two dimensions, encompassing physical and kinematic aspects. Subsequently, data collection and fusion were carried out using laser radar and depth cameras, establishing a virtual model of the working scenario and mapping the physical entity to the digital twin model. Building upon this foundation, improvements were made in applying the full-coverage path planning algorithm by integrating a pure tracking algorithm, thereby enhancing the cleaning efficiency. Obstacle detection and localization were conducted using infrared and depth cameras positioned above the four corners of the spent fuel pool, with the digital twin platform transmitting coordinates to the robot for obstacle avoidance operations. Finally, comparative experiments were conducted on the robot’s full-coverage algorithm, along with simulation experiments on the robot’s position and motion direction. The experimental results indicated that this approach reduced the robot’s overall cleaning time and energy consumption. Furthermore, it enabled motion data detection for the digital twin robot, reducing the risk of collisions during the cleaning process and providing insights and directions for the intelligent development of foam cleaning robots.

Funder

Development of Underwater Acoustic Transducer Based on Two-Dimensional Curved Surface Composite Materials

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3