Effect of Chlorhexidine Digluconate on Oral Bacteria Adhesion to Surfaces of Orthodontic Appliance Alloys

Author:

Gergeta Doria1,Badnjevic Matea2,Karleusa Ljerka3,Maglica Zeljka4ORCID,Spalj Stjepan25ORCID,Gobin Ivana6ORCID

Affiliation:

1. Community Health Center Porec, 52440 Porec, Croatia

2. Department of Orthodontics, University of Rijeka, Faculty of Dental Medicine, 51000 Rijeka, Croatia

3. Department of Physiology and Immunology, University of Rijeka, Faculty of Medicine, 51000 Rijeka, Croatia

4. University of Rijeka, Faculty of Biotechnology and Drug Development, 51000 Rijeka, Croatia

5. Department of Dental Medicine, J. J. Strossmayer University of Osijek, Faculty of Dental Medicine and Health, 31000 Osijek, Croatia

6. Department of Microbiology and Parasitology, University of Rijeka, Faculty of Medicine, 51000 Rijeka, Croatia

Abstract

This study aimed to analyse the effect of chlorhexidine digluconate (CHX DG) mouthwash on the adhesion of oral bacteria to orthodontic appliances. The interactions of four bacteria (S. mutans, A. actinomycetemcomitans, S. oralis, and V. parvula) with two alloys (stainless steel [SS] and nickel-titanium [NiTi]) and three CHX DG solutions (commercial products Curasept and Perio Plus, and pure CHX DG, all with 0.12% active substance) were tested. The adhesive effect on the orthodontic wires was evaluated after 24 h for S. oralis and after 72 h for the other bacteria. The minimum bactericidal concentration of the solution for each bacterial strain was determined using the dilution method to test the antibacterial action. Salivary-pretreated orthodontic archwires were exposed to minimal bactericidal concentrations of solution and bacteria. Commercial antiseptic products, especially Perio Plus, showed a better inhibition of bacterial adhesion to both alloys than pure CHX DG solution (p < 0.05). A. actinomycetemcomitans was most inhibited in the adhesion of all bacteria by the CHX DG products. A greater inhibition of streptococci adherence was observed on SS, while that of A. actinomycetemcomitans was observed on NiTi. V. parvula inhibition was product-dependent. Although there were differences between the strains and the tested agents, it can be concluded that Perio Plus most effectively inhibited the adhesion of all tested bacteria to the SS and NiTi alloys. A. actinomycetemcomitans was most sensitive to all tested agents, while S. mutans showed the highest resistance. The effectiveness of the tested agents was better on NiTi alloys.

Funder

Croatian Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3