Commonsense-Guided Inductive Relation Prediction with Dual Attention Mechanism

Author:

Duan Yuxiao1ORCID,Tang Jiuyang1,Xu Hao1,Liu Changsen1,Zeng Weixin1ORCID

Affiliation:

1. Laboratory for Big Data and Decision, National University of Defense Technology, Changsha 410072, China

Abstract

The inductive relation prediction of knowledge graphs, as an important research topic, aims at predicting the missing relation between unknown entities with many real-world applications. Existing approaches toward this problem mostly use enclosing subgraphs to extract the features of target nodes to make predictions; however, there is a tendency to ignore the neighboring relations outside the enclosing subgraph, thus leading to inaccurate predictions. In addition, they also neglect the rich commonsense information that can help filter out less convincing results. In order to address the above issues, this paper proposes a commonsense-guided inductive relation prediction method with a dual attention mechanism called CNIA. Specifically, in addition to the enclosing subgraph, we added the multi-hop neighboring relations of target nodes, thereby forming a neighbor-enriched subgraph where the initial embeddings are generated. Next, we obtained the subgraph representations with a dual attention (i.e., edge-aware and relation-aware) mechanism, as well as the neighboring relational path embeddings. Then, we concatenated the two embeddings before feeding them into the supervised learning model. A commonsense re-ranking mechanism was introduced to filter the results that conformed to commonsense. Extensive experiments on WN18RR, FB15k-237, and NELL995 showed that CNIA achieves better prediction results when compared to the state-of-the-art models. The results suggested that our proposed model can be considered as an effective and state-of-the-art solution for inductive relation prediction.

Funder

NSFC

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3