Nonlinear Robust Adaptive Control of Universal Manipulators Based on Desired Trajectory

Author:

Chen Yu1ORCID,Ding Jianwan1,Chen Yu1ORCID,Yan Dong1

Affiliation:

1. School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

The introduction of a dynamic model in robot trajectory tracking control design can significantly improve its trajectory tracking accuracy, but there are many uncertainties in the robot dynamic model which can be dealt with through robust control and adaptive control. The prevailing robust control as well as adaptive control methods require real-time computation of robot dynamics, but the extreme complexity of the robot dynamics equations makes it difficult to apply these methods in real industrial systems. To this end, this article proposes a robust adaptive control method based on the desired trajectory, which uses the desired trajectory to compute most of the control terms offline, including the robot’s nominal dynamics and regression matrices, and substantially reduces the need for real-time computation of the feedback signals. The robust term modifies the perturbation of the inertial parameters of the links, the adaptive term learns the friction coefficients of the joints online, and an additional compensation term is designed to satisfy the Lyapunov stability condition of the system. Finally, taking a universal manipulator as the experimental platform, the control performances of different control methods are compared to show the feasibility of the controller and the effective reduction in real-time computational complexity.

Funder

the National Key R&D Program of China

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3