Randomly Distributed Passive Seismic Source Reconstruction Record Waveform Rectification Based on Deep Learning

Author:

Zhao Binghui1,Han Liguo1,Zhang Pan1ORCID,Feng Qiang1,Ma Liyun1

Affiliation:

1. College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, China

Abstract

In passive seismic exploration, the number and location of underground sources are very random, and there may be few passive sources or an uneven spatial distribution. The random distribution of seismic sources can cause the virtual shot recordings to produce artifacts and coherent noise. These artifacts and coherent noise interfere with the valid information in the virtual shot record, making the virtual shot record a poorer presentation of subsurface information. In this paper, we utilize the powerful learning and data processing abilities of convolutional neural networks to process virtual shot recordings of sources in undesirable situations. We add an adaptive attention mechanism to the network so that it can automatically lock the positions that need special attention and processing in the virtual shot records. After testing, the trained network can eliminate coherent noise and artifacts and restore real reflected waves. Protecting valid signals means restoring valid signals with waveform anomalies to a reasonable shape.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jilin Province

Lift Project for Young Science and Technology Talents of Jilin Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3